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ABSTRACT

Selecting optimum HPLC operating conditions during the
development of new analytical separations is difficult due to the
high degree of process variable interaction and the lack of robust
process models. Traditionally, the methods development strategy
in analytical applications involves a trial-and-error grid search
method that is both inefficient and costly. Several researchers
have investigated more practical and efficient methods for design-
ing optimal HPLC separations at the analytical stage. These
strategies typically utilize an efficient design of experiments and
response surface optimization techniques. Response or criteria
functions are employed to numerically quantify chromatograms
and rank them in order of desirability.

A crucial step in the optimization problem is the selection of a
proper response function. Several such response functions exist
and the choice of a proper function is dependent on the overall
goal of the separation at hand. The intent of this review is to pre-
sent and comment on the strengths and shortcomings of several of
the more commonly used criteria functions as well as to illustrate
basic response surface optimization strategies and techniques as
applied to analytical scale HPLC separations.
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INTRODUCTION

Despite the advances that have been made in the field of liquid chro-
matography, the question of how to optimally develop a chromatographic
process for new separations of multi-component mixtures still exists. The
selection of optimal HPLC operating conditions is difficult and complex for
multi-component mixtures due to the high degree of process variable interac-
tion. Several process variables must be investigated in the optimization prob-
lem. Some of these variables, such as mobile phase composition, flow rate,
temperature, and pH can be optimized on-line. Other factors such as the selec-
tion of chromatographic mode, stationary phase, and column size must be
selected a priori based on sample composition and the experience of the chro-
matographer.

In preparative applications where the feed mixture is well identified and it
is desirable to purify one or more target compounds, fundamental models may
be employed to optimize the system by numerically simulating chro-
matograms.”” However, these fundamental models, which require knowledge
of the composition and physical properties of the feed mixture, are of little use
in analytical applications where analysis and quantification of a sample is
desired and the chromatographer has little, if any, a priori knowledge of the
feed mixture composition.

HPLC methods development at the analytical stage is traditionally accom-
plished through an exhaustive grid search experimental method." Though this
method usually results in an acceptable separation of the feed mixture, it is an
extremely inefficient trial-and-error process. It is overly expensive due to both
the time involved and the potential product wasted in the many experiments that
must be performed to find acceptable, though not necessarily optimal, operat-
ing conditions.

Several researchers have applied response surface optimization methods to
the design of analytical scale HPLC separations. These empirical methods gen-
erally utilize a statistical design of experiments, which uniformly samples the
experimental domain to generate an experimental test matrix. Response or cri-
teria functions are employed to quantify results numerically and rank chro-
matograms in order of their desirability. These criteria functions are mapped to
response surface models, which are then optimized within the constraints of the
experimental domain with respect to the process variables.

Selection of a proper response function is a crucial step in the optimization
process. Several response functions exist, and each is designed to quantify the
resulting chromatograms based on the overall goal of the separation. For
instance, a criteria function which is designed to quantify chromatograms
resulting from separations in which the purification of one target compound is
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desired do not perform well when used to quantify a separation in which base-
line resolution of all solutes in the feed slug is required.

This paper reviews reported case studies in which these empirical ap-
proaches to the optimization problem have provided for the optimal design of
HPLC separations with a minimum of experimentation. Of particular interest
are the multitudes of criteria or response functions that have been designed to
quantify chromatograms for the optimization of various systems. This paper
contains a compilation of several commonly used criteria functions and a dis-
cussion of their strengths and weaknesses in quantifying HPLC separations, as
well as detailed discussions on design of experiments and system optimization
through response surface modeling. While the majority of the case studies
reviewed illustrate the optimization of reversed-phase separations, it is a
straightforward task to apply the same techniques to other modes of HPLC
including normal-phase and ion-exchange chromatography.

CRITERIA FUNCTIONS AND NUMERICAL RANKING OF
CHROMATOGRAMS

In order to rank chromatograms in order of desirability during the opti-
mization process, it is necessary to quantify each chromatogram with a numer-
ical value using a criteria function. Several criteria functions, also known as
CRFs (chromatographic response functions), exist. The choice of a proper cri-
teria function is crucial to the outcome of the optimization process. Selection
of a criteria function should be made based on the ultimate goal of the separa-
tion such that the presence of unfavorable attributes on a chromatogram penal-
izes its criteria function value. Several commonly used criteria functions are
listed as Equations 1-14 in Table 1. Definitions of the symbols present in
Equations 1-14 can be found in the nomenclature section of this paper.

Several researchers discuss the use of capacity factors and the theoretical
number of plates as optimization criteria in HPLC methods development. The
capacity factor and number of plates are based on fundamental chromato-
graphic theory and describe the degree to which each solute of the feed slug is
resolved by the chromatography system. The capacity factor, £,” (Equation 1),
for a given solute i is defined as the ratio of the amount of solute i bound to the
stationary phase to the amount of solute i in the mobile phase.” Lindberg et al.’
report calculating capacity factors for each of the solutes in a multi-component
feed mixture and selecting operating conditions at which these capacity factors
are simultaneously maximized for all solutes. Note that capacity factors
account only for the retention times of the various solutes and do not include a
penalty for excessively wide peaks or for overlapping peaks which are both
highly undesirable. Thus, the use of the capacity factor alone does not supply
enough information to allow for adequate optimization of the system parame-
ters.
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Figure 1. Description of CRF parameters f, g, w and ¢.

The theoretical number of plates for a given solute i, N, is a measure of
column efficiency (Equation 2, w, defined in Figure 1). Cotton and Down’ pre-
sent the use of the theoretical number of plates as a criterion in the optimiza-
tion of reversed-phase chromatography for the separation of sulindac from
related compounds. They focus on maximizing the plate number for sulindac,
the target product. In applications such as this example where purification of a
single target product is the goal of the separation process, the use of plate num-
ber as the optimization criteria results in a sharp peak with a fairly long reten-
tion time. Like the capacity factor, however, the plate number is a measure of
the systems capability for resolving a single peak and gives no information
about surrounding peaks. Implementing the plate number as an optimization
criteria frequently leads to unresolved peaks in multi-component systems. We,
therefore, discourage the use of plate number as the optimization criteria.

In addition to these fundamentally based optimization criteria, several
empirical criteria functions have been developed. Perhaps the most widely used
criteria function is the resolution between peak pairs. Examination of Equation
3 shows that the resolution of a given peak pair will be highest when neighbor-
ing peaks are well separated (i.e. when retention times are far apart and peaks
are relatively narrow). However, the resolution function contains no informa-
tion about either the number of peaks eluted or the total time required for the
separation, though it is desirable to account for both of these factors in the
analysis. It is important that the number of peaks eluted somehow be included
in the optimization criteria so as to account for co-eluting peaks (unresolved
solutes), and it is desirable that the total analysis time be minimized to decrease
optimization costs. Nevertheless, due to its simplicity, the resolution function
is perhaps the most popular of the empirical criteria functions.
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Researchers make use of the resolution function as an optimization crite-
ria in several different ways. Wester et al.’ report setting a threshold value for
an acceptable resolution between peak pairs. They then discard from the opti-
mization scheme operating conditions that lead to chromatograms in which any
peak pair exhibits a resolution below this threshold. In this manner, they suc-
cessfully optimize the composition and pH of the mobile phase for the reversed-
phase separation of seventeen monoamine neurotransmitters.

Jandera and Prokes’ use the concept of resolution mapping to optimize a
ternary mobile phase gradient for the reversed-phase separation of phenylurea
pesticides. In resolution mapping, the resolutions of each peak pair are plotted
as a function of the optimization variables. An appropriate optimum set of con-
ditions is found by manually selecting values of the variables at which each
peak pair of interest exhibits an acceptable resolution value.

Another application of the resolution criteria involves maximizing the res-
olution between a given target peak and its immediate neighbors. This method
is used when complete separation of only one of the components in the feed
mixture is desired and frequently leads to the overlapping of other peak pairs.
Dimov and Simeonov'’ report optimizing the separation of insulin from a com-
plex feed mixture in reversed-phase liquid chromatography using this tech-
nique. Lundell and Markides'' also employ this use of the resolution criteria to
separate key peptides from complex mixtures using reversed-phase liquid chro-
matography.

Several researchers report maximizing the resolution of the least separated
peak pair as the optimization objective. Guillaume and Guinchard"” employ this
technique to successfully optimize the mobile phase composition, mobile phase
flow rate, and column temperature in reversed-phase liquid chromatography for
the separation of a complex feed mixture. Bourguignon et al.” use this criteria
to optimize mobile phase pH and organic modifier content for the separation of
chlorophenols.

In addition, Wang et al.” report maximizing the minimum resolution to
optimize initial solvent strength and gradient time in gradient elution liquid
chromatography for the separation of common pesticides. Hu and Massart"
also describe the use of this criterion for the optimization of a multi-component
mixture containing paracetamol, acetylsalicylic acid, caffeine, benzocaine, car-
bamazepine, and propyphenazone using reversed-phase HPLC.

It should be noted that the resolution function itself accounts only for the
separation of a given pair of neighboring peaks. In order to be useful as an
overall criteria function for analytical separations in which baseline separation
of all solutes is desirable, the resolutions of each peak pair in the chromatogram
must somehow be combined to give an overall resolution value for the entire
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chromatogram. This overall resolution can then be compared with the overall
resolutions of chromatograms run at different operating conditions during the
optimization process.

One way in which the resolutions may be combined is by forming a reso-
lution product as in Equation 4. Wang et al."” report the successful use of the
resolution product in optimizing the mobile phase pH and ion concentration in
reversed-phase liquid chromatography. They conclude that the resolution prod-
uct is useful for obtaining peaks which are evenly distributed over the chro-
matogram, but note that a serious drawback of using the resolution product as
an optimization criteria is the loss of individual peak information.

Another drawback of combining the individual resolutions into a resolu-
tion product should be noted. In cases in which peaks are co-eluting in one
experiment and marginally separated in another, the resolution product will be
higher for the chromatogram in which the peaks co-eluted if the resolution for
the marginally separated peak pair is less than unity. This is in contrast to the
fact that partially overlapping peaks are more desirable than completely over-
lapping peaks in most applications. Adding the individual resolutions to form
a resolution sum (Equation 5) rectifies this inconsistency.

Recently, more advanced empirical criteria functions have been developed
to address the shortcomings of the standard resolution function. Palasota et al."’
discuss the use of a CRF (chromatographic response function, Equation 6, f; and
g, defined in Figure 1) in the optimization of the mobile phase composition for
the separation of five neutral organic solutes. The logarithm of the separation
measurement is employed so that the CRF will be more sensitive to highly over-
lapped peaks than to those that exhibit better separation.

In addition, Palasota et al." introduce the use of desirability functions to
combine the use of this CRF with a penalty for longer-than-desirable separation
times (Equation 7). As can be seen, D, is maximized when the CRF is maxi-
mized, or when optimum separation of the feed mixture occurs. D, is maxi-
mized when the total analysis time is minimized. These functions are then com-
bined to yield the overall desirability function, D, which becomes the
optimization criteria function. Thus, it can be seen that any set of several dif-
ferent chromatographic criteria functions can be combined in a similar manner
to yield an overall performance function suited for a given optimization task.

Djordjevic et al."” report using a CRF of the form found in Equation 8
where 7 is a measure of baseline noise. By accounting for baseline noise this
statistic provides a more accurate analysis of the actual degree of peak separa-
tion than does its counterpart found in Equation 6. Although this CRF contains
only information on separation between adjacent peak pairs, Djordjevic found
this CRF useful for the optimization of the mobile phase in reversed-phase
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chromatography. In addition, Guillaume and Guinchard" discuss yet another
variation of the chromatographic response function (CRF). They report the use
of a CRF of the form found in Equation 9 for the optimization of the mobile
phase in the reversed-phase separation of benzodiazepines. It is desirable to
maximize the objective function (£,,) of Equation 9. As can be seen, this form
of the CRF takes into account peak separation but fails to account for total sep-
aration time and the number of peaks eluted, which may be important parame-
ters in the optimization problem.

Hatrik et al.” report the use of a threshold criteria function in the opti-
mization of a binary mobile phase for the separation of six phenylurea herbi-
cides using reversed-phase chromatography. In this threshold criteria (Equation
10), 1, is a Boolean expression and equals one if the degree of separation
between peaks k and k+/ is above the set threshold value. This criteria func-
tion accounts for peak separation, as well as the cost of experimentation, which
may become important if several experiments are run in the course of the opti-
mization.

Lukulay and McGuffin® discuss the use of a modified chromatographic
resolution statistic (CRS, Equation 11) for the simultancous optimization of
mobile phase composition and temperature in reversed phase liquid chro-
matography. The first term of the CRS is a measure of the extent of separation
between adjacent peak pairs and approaches zero when all peaks approach the
defined optimum resolution value. The second term of the CRS measures the
uniformity of the spacing between peaks and approaches unity when sum of the
individual peak pair resolutions is equal to the average value. Finally, the last
term of the CRS accounts for total analysis time. Minimization of the CRS
leads to peaks that are well resolved and uniformly spaced on the chro-
matogram.

Furthermore, Morris et al.” discuss the design of a new criteria function
known as the chromatographic exponential function (CEF, Equation 12) which
deals with the shortcomings of the CRS. The CEF improves upon the CRS by
decreasing the sensitivity of the CRS to peak pairs that exhibit greater than the
desired resolution and by placing minimal emphasis on overall analysis time
unless the maximum acceptable time for the separation is exceeded. The CEF,
like the CRS, is minimized during the optimization. Though Morris et al. illus-
trate the use of the CEF through the optimization of a gas chromatography sep-
aration, it is straightforward to implement the CEF as a valid criteria function
for HPLC separations as well.

Nyiredy et al.”” report the use of a chromatographic response function
(CRF, Equation 13) to optimize the mobile phase for the reversed-phase sepa-
ration of furocoumarin isomers. The first term in Equation 13 accounts for the
resolution between peak pairs, with resolution given by Equation 3. The sec-
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ond term assigns a bonus to chromatograms which exhibit more peaks than oth-
ers, since co-eluting peaks are undesirable. The final terms assign a penalty if
the elution time of any peak on the chromatogram is longer or shorter than the
user-defined desirable maximum and minimum elution times. It is desirable
that each of the individual terms, and thus the CRF itself, be maximized during
the optimization. By accounting for the number of peaks and the total analysis
time, the CRF of Equation 13 contains much more information than does the
standard resolution function.

Klein and Rivera” describe the implementation of a chromatographic opti-
mization function (COF) that was developed for use in the optimization of pro-
tein separations using ion-exchange chromatography (Equation 14). The first
term of the COF accounts for peak separation and penalizes peak pairs that do
not exhibit baseline resolution. The second term accounts for the number of
peaks eluted in a given chromatographic run so that those chromatograms
exhibiting fewer peaks than others are penalized. The third term of the COF
accounts for total analysis time, which it is desirable to minimize. Finally, the
fourth term of Equation 14 accounts for peak shape. A vector quantizing neural
network is employed as a pattern recognition tool to automatically classify
peaks based on peak shape. Classification results are used to penalize undesir-
able peak geometries in the COF and force the system towards conditions which
produce symmetrical peaks during the optimization.™

The response criteria discussed above represent some of the more fre-
quently used criteria functions in chromatographic optimizations. The choice
of a criteria function should be made carefully, and should be based on the ulti-
mate goal of the separation at hand. It is our opinion that neither the capacity
factor nor the plate number is a good indicator of product purification and that
neither should be applied as an optimization criteria. If the goal of a given sep-
aration is to purify one key product, the minimum resolution technique is an
adequate choice. However, for more complicated separations in which baseline
resolution is desired for all solutes, the total number of solutes in the feed slug
is unknown, and/or where analysis time is a key factor, the chromatographer
should select one of the more sophisticated chromatographic response functions
(CRFs) discussed above. The chromatographer should also realize that several
different criteria functions could be coupled to form an overall objective func-
tion as is illustrated by Palasota et al."

RESPONSE SURFACE MODELING

Response surface modeling is a widely used empirical optimization strat-
egy. In contrast with fundamental modeling techniques, no prior knowledge of
the properties of the feed mixture or the chromatographic system is necessary
when the response surface methodology is applied to the optimization of HPLC
separations. Whereas, with a fundamental model, dozens of experiments may
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be necessary to evaluate the thermodynamic and kinetic properties of the given
system, the parameters of most response surface models can be determined
with very few experiments, thereby significantly lessening development time
and optimization costs.

The main drawback of response surface modeling is that instead of pre-
dicting actual chromatograms (eluent concentration versus time) these models
predict the value of a chosen criteria function for a given set of operating con-
ditions. However, these models have been shown to adequately represent the
criteria functions inside of the defined experimental domains, provided a uni-
form sampling of the domains exists in the design of experiments. Several
examples of response surface modeling, as applied to the optimization of HPLC
separations, are present in the literature and are summarized here.

Design of Experiments

Due to the reduced number of experiments that are typically used to fit
response surface models, it is important that these experiments be selected so
that they adequately sample the entire experimental domain. This is usually
accomplished through the use of a statistical design of experiments. Several
different types of designs are reported in the HPLC optimization literature.

Often, a preliminary factorial design is performed to evaluate the extent of
the effect of each potential optimization variable on the separation.”® These ini-
tial factorial designs or screening experiments, usually sample only the extreme
bounds of each experimental variable. Lindberg et al.” discuss the use of a full
factorial design which samples the corner points of a cube formed by a three-
dimensional representation of the experimental domain for three variables
(shown in Figure 2a for two dimensions). Factorial designs of this type result
in 2 points, where d is the number of experimental variables. Full factorial
designs are useful for determining which of the process variables have a signif-
icant effect on system performance.

While full factorial designs are useful for the determination of optimiza-
tion parameters, they are not, in general, useful for the determination of
response model coefficients due to an absence of information about the interior
portion of the experimental domain. More sophisticated experimental designs
are employed for this purpose.

The use of a full factorial design with added center points has been
reported in the HPLC optimization literature. In this design of experiments,
sampling is performed at the bounds and the center point of each variable’s
range, generating 3° points (Figure 2b). Thus, for a two-factor design there will
be 9 experimental points. Wang et al"” report using a full factorial design with
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Figure 2. Full factorial design (a), full factorial design with center points (b), central com-
posite design (c), and Doehlert uniform shell design (d) for two variables coded between -
1.0 and 1.0.

added center points to design experiments for the optimization of mobile phase
pH and ion concentration in reversed-phase chromatography.

Otto and Wegscheider” discuss the use of a variation of a full factorial
design for the optimization of reversed-phase chromatography. Based on chro-
matographic theory, it is determined for their system that the main optimization
variables in order of importance are the pH, methanol content, and ionic con-
centration of the mobile phase. Therefore, they select six levels for the pH,
three for the methanol content, and two for the ionic concentration as a basis for
their factorial design. The resulting experimental matrix thus contains 6 x 3 x
2, or 36, experiments. These types of designs which include an excessive num-
ber of experiments can be avoided if one of the following, more sophisticated,
design of experiments strategies is employed.
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The central composite design is an experimental design in which the points
lie on the circumference and center of a circle in two dimensions. This type of
design generates 2'+2d+1 experiments. In a central composite design, as in a
factorial design, each experimental variable is subjected to the same number of
levels. The center point of a central composite design is often repeated so as to
estimate experimental error (Figure 2¢)."” Cotton and Down’ report the use of
a central composite design of experiments for the optimization of organic mod-
ifier concentration, acetonitrile concentration in the organic modifier, and the
buffer concentration in the mobile phase as well as column temperature for the
reversed-phase separation of sulindac.

Two more advanced forms of factorial designs are also used to design
experiments for the optimization of chromatography separations. The Doehlert
design, also known as the uniform shell design, and the modified Box and
Benhken design both generate d’+d+1 points. The main difference between
these two designs is that while all variables are subjected to the same number
of levels in the Box and Benhken design, the Doehlert design has the added
advantage of being multi-level. In a Doehlert design, variables of more impor-
tance may be subjected to more variations than other less significant variables
are (Figure 2d).” These designs contain considerably fewer points than the cen-
tral composite design, especially when a large number of variables are involved.
Thus, a trade-off exists in the design of experiments. More experimental points
may lead to a better sampling and a more accurate response model of the sys-
tem. However, optimization time and costs also increase with the number of
experiments, which is undesirable.

Guillaume and Guinchard”" employ the modified Box and Benhken
design for the simultaneous optimization of the mobile phase composition,
mobile phase flow rate, and column temperature. They successfully optimize
the separation of ten benzodiazepines using reversed-phase HPLC.

Bourguignon et al." discuss the use of a Doehlert design in the optimiza-
tion of mobile phase pH and organic modifier content for the isocratic separa-
tion of chlorophenol isomers using reversed-phase HPLC. They find the
response model determined through these experiments to be accurate within the
experimental domain, and they conclude that the Doehlert shell design is use-
ful for uniformly sampling the experimental domain.

In addition, Hu and Massart'* compare and contrast several of the factorial
design strategies described above. They report finding that while the Dochlert
design requires significantly fewer experiments than the central composite
design, the response models determined by the Doehlert experiments are as
accurate as those generated by the central composite design. Therefore, they
conclude that the Doehlert design is the more economical choice. Klein and
Rivera” also find the Doehlert design to be useful and efficient during the opti-
mization of protein separations using ion-exchange chromatography.
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Finally, it should be noted that while each factorial design has advantages
and drawbacks, the ultimate choice of an appropriate factorial design also must
be somewhat based upon the anticipated form of the response model. If from
past experience the chromatographer knows a priori that quadratic effects and
variable interactions will be statistically significant in the response model, one
of the more sophisticated design of experiments should be chosen. For exam-
ple, a second-order polynomial model complete with quadratic effects and vari-
able interaction has six coefficients that must be determined for a two-factor
optimization. A Doechlert design generates seven points in two-dimensional
factor space, while a full factorial design generates only four points. Thus, a
Doehlert design will provide enough information to confidently fit the coeffi-
cients of this model while a full factorial design will not.

Response Model Structures

After choosing an appropriate design of experiments, performing the
experimentation, and quantifying the results with an appropriate criteria func-
tion, the final steps in the optimization process are to define and optimize an
objective function. While some researchers report the use of the previously dis-
cussed criteria functions as objective functions which are then optimized by
performing additional experiments, some researchers recently discuss the appli-
cation of numerical optimization techniques which reduce experimental burden.

In order to numerically optimize the system, an appropriate objective func-
tion, or response model, must be developed. Once a model exists which maps
the criteria functions to the experimental variables, the model can be optimized
in the experimental variables using an appropriate optimization algorithm.

Many researchers report success in mapping the resolution criteria and
various chromatographic response functions (CRFs) to second-order polyno-
mial models. These models have the following form when two experimental
variables are involved.'

y =b, +b,x, +b,x, + b, X] + by,x7 + b, x,X, (15)

where y is the value of the criteria function (dependent variable), x, and x,
are the two independent variables, and the b, ‘s are the model coefficients which
are determined through a least-squares regression of the experimental data.
Notice that third- and higher-order variable interactions are usually omitted
since they have been shown to be statistically unimportant when modeling most
criteria functions.’

It should also be noted that since higher-order interactions are omitted
there still are more experimental points than model coefficients when either the
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Dochlert or the central composite factorial designs are employed. Thus, the
model coefficients can still be found with sufficient statistical accuracy. If
higher-order interactions are included in the model, the central composite and
Dochlert designs do not generate enough data to confidently fit the model and
additional experimentation becomes necessary.

Bourguignon et al." employ models of the type found in Equation 15 to
map values of the minimum resolution to the pH and acetonitrile concentration
of the mobile phase in the optimization of a chlorophenol separation. They find
that the quadratic response model is sufficient for modeling the minimum res-
olution and that the addition of higher order terms to the model is not neces-
sary. In addition, Cotton and Down’ discuss using a second-order polynomial
to model capacity factor and peak width responses. In their optimization
scheme, these models are employed to predict the capacity factors and peak
widths for each peak in the chromatogram at hypothetical experimental condi-
tions. With this information, the theoretical number of plates is calculated
using Equation 2 and the minimum plate number is maximized.

In addition, Hu and Massart" investigate the efficiency of several factorial
design strategies combined with several possible response models, where effi-
ciency is defined as the number of coefficients in the response model divided
by the number of experimental points in the factorial design. They report find-
ing that the Doehlert design is the most efficient factorial design for fitting a
second-order polynomial model to the solute capacity factors during the opti-
mization of reversed-phase chromatography.

Several other researchers have also reported the use of second-order poly-
nomial response models. Nyiredy et al.” discuss the use of a quadratic response
model for predicting CRF values as a function of experimental variables for the
separation of furocoumarin isomers. Wang et al.""**" also discuss the useful-
ness of quadratic response models for a variety of optimization problems.

In cases where full factorial designs are employed to reduce experimental
burden, it becomes necessary to drop the quadratic terms in the response model
due to the lack of experimental data. Wester et al." employ a full factorial
design to generate an experimental matrix in three variables. Since this factor-
ial design strategy results in only eight experiments, it is not possible to confi-
dently fit a model of the form shown above for three variables (Equation 15).
Therefore, they neglect the quadratic dependence of the variables but still
account for first-order variable interaction with the following model:

y =b, +b,x, +b,X, + byX; + b, XX, + b;X,X; + b,X, X5 + b1 XX, X, (16)
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Although quadratic dependency has been shown by other researchers to be
important when modeling some of the more sophisticated CRFs, Wester et al.
report finding Equation 16 to be useful in mapping the solute retention times to
the optimization variables of their system.

In addition, Guillaume and Guinchard™" discuss the use of a logarithmic
variation of Equation 15 to increase the non-linearity of the response model
when modeling the minimum resolution criteria. Their model has the form:

In(1+R,,,)=b, + b In(x,}+b,In(x,)+b,In(x,}+b,,In(x, In(x,)+b,,In(x)In(x,)
b, In(x)In(x)+b, () +b, In'(x,) (17)

where R, is the minimum resolution, x, is the mobile phase composition,
x, is the mobile phase flow rate, and x, is the column temperature. While it is
not obvious from their results whether or not the logarithmic dependencies of
Equation 17 provide a substantial increase in model accuracy, they claim to
have found it useful in their application.

To summarize, quadratic response models of the type found in Equation 15
are frequently used to map criteria function values to experimental variables
with satisfactory results. It has been shown that in most cases third and higher
order model terms are statistically unimportant. The chromatographer should
be aware of how many model coefficients are going to need to be determined,
through either previous experience or the use of screening experiments, before
selecting an experimental design. This will ensure that enough data points exist
to fit the model coefficients with a high level of statistical confidence.

Optimization Techniques

Having chosen an appropriate model and determined its coefficients
through experimentation, the next and final step in the optimization procedure
is to optimize the model with respect to the experimental variables so as to opti-
mize the selected criteria function within the experimental domain. This can be
done either graphically by plotting the response surface (only practical when
two or fewer experimental variables are involved), or numerically by using an
appropriate optimization algorithm. While both schemes are valid, numerical
optimization has the advantage of being able to be implemented with a com-
puter program, thus allowing for the possible automation of the optimization
process.

The most basic and straightforward of the optimization techniques
reported in the literature is response surface modeling. In response surface
modeling, a plot of the criteria function versus the experimental variables is
generated. This is usually accomplished by plotting a model of the form found
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in Equation 15. The optimum operating conditions are those that correspond to
the optimum value of the criteria function found on the plot. While this method
produces good results, it should be noted that this technique can only be applied
to optimization problems in which two or fewer factors are involved since it is
difficult to visualize fourth- and higher-order surface plots. Furthermore, since
this technique involves the chromatographer reading numbers off of a plot, the
technique cannot be automated and there is a possibility for the introduction of
human error.

Nevertheless, several researchers report the use of this optimization tech-
nique. Bourguignon et al.’ discuss the use of minimum resolution (Equation 3)
surface plots to find the optimum pH and organic modifier content of the
mobile phase for the reversed-phase separation of a chlorophenol mixture. In
addition, Nyiredy et al.” report the use of CRF response surfaces in the opti-
mization of the mobile phase composition for the reversed-phase separation of
furocoumarin isomers.

Though graphical solutions to the optimization problem are usually
applied only in situations where there are two or fewer factors to optimize and
the separation can be described by a single criteria function, they can be
extended to larger systems. Lindberg et al.” describe using topographical plots
of the capacity factors (Equation 1) of each of the solutes in the feed mixture.
The optimum operating conditions for the reversed-phase separation of opiates
are then found by superimposing these plots and finding the conditions at which
the capacity factors are simultaneously sufficiently high for each solute. One
last example of the use of graphical optimization techniques is described by
Bergqvist and Kaufmann.” They discuss the determination of optimum condi-
tions for the analysis of triacylglycerol by using surface plots, despite the fact
that more than two experimental variables are involved. To accomplish this,
they employ linear combinations of the variables to reduce the dimensional
order of the surface plots.

Though all of the above researchers report success in using graphical
approaches to the optimization problem, the automation of methods develop-
ment optimizations is becoming increasingly desirable. Since graphical meth-
ods cannot easily be translated to a computer algorithm, numerical optimization
techniques are necessary. The simplest numerical technique reported in the lit-
erature is the computerized grid search. In these studies, criteria values are
often fit to response models of the type found in Equation 15. These models are
then optimized in a trial-and-error fashion by a computer. A computer program
evaluates the model starting with an initial set of operating conditions. It then
systematically samples the entire experimental domain and keeps track of the
optimum value of the criteria function found along with the corresponding val-
ues of the optimization variables. Selecting the step size in a grid search is a
key issue. Too large of a step size will lead to a loss of information, while too
small of a step size will lead to excessive computational burden.
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Several researchers discuss the use of a grid search for the optimization of
chromatographic separations. Wester et al.’ report the use of a grid search to
maximize the resolution of the separation of monoamine neurotransmitters. In
addition, Otto and Wegscheider” discuss the use of a computerized grid search
for the optimization of the separation of dipeptides. Djordjevic et al.” report
using a variation of a computerized grid search. In their work, a computerized
grid search is used to find the optimum mobile phase conditions as predicted
by a response model. Experiments are then run at these optimum conditions as
well as at the conditions corresponding to the point in the experimental domain
where the least information was known (i.e., where no previous experiments
have been performed). In this manner, the optimization algorithm is forced to
find global rather than local optima.

It should be noted that the traditional experimental grid searches for the
optimization of HPLC separations are still widely used.” Like a computerized
grid search, an experimental grid search is a trial-and-error search for the opti-
mum value of the chosen criteria function. However, an experimental grid
search does not make use of a response model but requires an actual experiment
to be performed at each point of interest. Experimental grid searches lead to
excessive experimentation, which should be avoided. Extensive experimenta-
tion becomes overly costly due to both the significant number of man-hours
involved and to the large amount of potential product which is wasted during
these experiments. Nonetheless, experimental grid searches are still used today.
Lundell and Markides'' describe the use of a primitive grid search for the opti-
mization of the mobile phase for the reversed-phase separation of peptides.
They report performing twenty-five experiments in the course of this optimiza-
tion.

Of the more sophisticated numerical optimization techniques that exist, the
simplex method is perhaps the most widely used for the optimization of liquid
chromatography. The simplex algorithm can be used as either a numerical or
an experimental technique. This algorithm makes use of a simplex, a geomet-
ric figure having d+/ sides in d-space. Thus in two factor space the simplex
contains three sides and is a triangle. The three vertices of this triangle repre-
sent three different sets of the two experimental factors, or three different sets
of operating conditions in the optimization problem. The response model is
evaluated (or an experiment is performed) at each of these sets of conditions,
the value of the chosen criteria function is determined for each point, and the
points are listed in order from most to least desirable.” Through a series of log-
ical moves the simplex then “climbs” the response surface in search of the opti-
mum. The main drawback of the simplex algorithm is that it often finds local
rather than global optima. Starting the simplex from more than one point in the
factor space and checking that the same optimum point is found can circumvent
this problem. If the same optimum is found when the algorithm is started from
Variouszopoints in the experimental domain, the optimum can be considered
global.
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In the past, the simplex technique has been used as an experimental opti-
mization technique. The use of the simplex in this manner requires extensive
experimentation, since experiments must be performed at each newly calcu-
lated simplex vertex. Palasota et al.'’ describe the use of the simplex technique
for the experimental optimization of the mobile phase in reversed-phase liquid
chromatography.

More recently, however, the simplex technique has been used numerically
to optimize chromatographic response surface models. When used numerically,
the value of the model at each simplex vertex is evaluated by direct substitution
of the experimental conditions into the response model (or fundamental model)
rather than through experimentation. This significantly reduces the number of
experiments that must be performed in the optimization procedure.

Guillaume and Guinchard” discuss the use of a numerical simplex tech-
nique to optimize the flow rate and composition of the mobile phase as well as
the column temperature. Wang et al.”*’ also employ a numerical simplex algo-
rithm, and report that over fifty experiments can be eliminated from the opti-
mization process when the simplex is used numerically rather than as an exper-
imental technique. In addition, Klein and Rivera™ have investigated the use of
a numerical simplex algorithm for the optimization of a quadratic response
model during the methods development of ion-exchange protein separations.

In closing, a numerical optimization technique is recommended so that the
optimization scheme can be automated. Of the optimization techniques
reported on in the HPLC optimization literature, the computerized grid search
and the simplex technique seem to be the most popular due to their roots in the
experimental optimization of chromatographic systems. While both are highly
accurate algorithms, the grid search is much more computationally intensive
than is the simplex algorithm. However, the grid search samples the entire
experimental domain whereas the simplex algorithm does not. Therefore, if a
simplex method is employed, it should be initialized at several different starting
points in order to be sure that the global optimum is found.

An Illustrative Example

As an example of the benefits to be gained through optimization of a chro-
matographic system, consider the following case study in which a ternary pro-
tein sample consisting of equal concentrations of lysozyme (L), conalbumin
(C), and bovine serum albumin (BSA) was separated using anion-exchange
chromatography. The available optimization parameters were the pH of the
mobile phase and the slope of the salt gradient. Optimization was performed
using a Doehlert design and a numerical simplex optimization algorithm. The
COF of Equation 14 was employed as the criteria function, which was modeled
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Figure 3. Ternary protein mixture containing equal concentrations of lysozyme (L), conal-
bumin (C) and bovine serum albumin (BSA) chromatographed at optimum operating con-
ditions.

within the experimental domain using a quadratic response model of the form
found in Equation 15.*

Figure 3 contains a chromatogram at the optimum conditions, while Figure
4 contains a chromatogram of the same system at non-optimum operating con-
ditions. Note that the non-optimum conditions depicted in Figure 4 lead to a
total analysis time of almost twice that of the optimized case. In addition,
lysozyme and conalbumin co-elute at the non-optimum conditions which is
highly undesirable, as the overall goal of the separation was the baseline reso-
lution of all solutes in the feed mixture. It should be further noted that the chro-
matogram of Figure 4 gives a much higher value of the resolution function
(Equation 3) than does Figure 3, although, it is clear that the chromatogram of
Figure 3 is far superior to that of Figure 4. This further illustrates the impor-
tance of implementing one of the more detailed criteria functions which is able
to account for the total number of peaks eluted and the final analysis time.

SUMMARY

HPLC methods development is a complex optimization problem due to
both the lack of a robust process model and the high degree of interaction
amongst process variables. Traditionally, HPLC methods development is per-
formed through tedious, inefficient trial-and-error experimental grid search
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Figure 4. Ternary protein mixture containing equal concentrations of lysozyme (L), conal-
bumin (C) and bovine serum albumin (BSA) chromatographed at non-optimum condi-
tions. Note the excessive analysis time and co-elution of L and C.

methods. These trial-and-error methods are undesirable due to the excessive
amount of experimentation required. This excessive experimentation causes the
approach to be overly costly due to increased development time and the large
amount of potential product that is wasted while performing the necessary
experiments.

A promising alternative to the trial-and-error methods is the use of an
empirical approach using a response model. This numerical approach keeps
experimentation to a minimum while allowing the optimization algorithm to be
computerized. Several researchers have reported the use of various empirical
approaches to the optimization problem.

The general empirical approach includes a statistical design of experi-
ments and a criteria function to quantify and rank the results of these experi-
ments in order of desirability. Factorial designs commonly used in the opti-
mization of chromatographic processes include the central composite design,
the Box and Benhken design and the Doehlert shell design. Of these designs,
we find the Doehlert design to be the most attractive due to its efficiency (num-
ber of experiments generated per experimental variable) and the fact that it is
multi-level.

By far, the most commonly used criteria function is the resolution criteria.
However, this criteria function accounts only for the separation of neighboring
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peaks. During the optimization it is desirable to minimize total analysis time
and to account for the number of peaks eluted to assure against the presence of
co-eluting peaks. More sophisticated chromatographic response functions
(CRFs) have been developed to account for this information. The applications
of several of these CRFs have been discussed in this review and an example of
an optimization in which the powerful COF of Equation 14 outperformed the
standard resolution function of Equation 3 has been presented.

Finally, once the experimental matrix has been generated, the experiments
have been performed and the results quantified using an appropriate criteria
function, a response model must be chosen to map the resulting values of the
criteria functions to the experimental variables. This response model then
becomes the objective function of the optimization problem. Several
researchers have investigated the use of second-order polynomial response
models and have found that in most cases these models are sufficient for pre-
dicting criteria function values within the optimization domain. Once the coef-
ficients of these models have been found through data regression, the model
can be optimized in the experimental variables through the use of an appropri-
ate optimization algorithm.

This review paper contains several examples of applications of the above
empirical approach, which suggest that this methodology is valid and consis-
tently produces acceptable results. This empirical approach is far superior to
the trial-and-error grid search method in practical applications due to the rela-
tively small number of experiments that are needed to successfully optimize the
HPLC separation.

APPENDIX A: NOMENCLATURE
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capacity factor for solute i

number of expected peaks

number of actual peaks

number of theoretical plates for solute i
measure of baseline noise in the system
number of peak pairs on a given chromatogram
resolution statistic for peaks i and i+/

average of peak pair resolutions

minimum acceptable resolution

optimum or desired resolution

resolution product

resolution sum

retention time of peak i (Figure 1)

maximum desired retention time

minimum desired retention time

void volume retention time

bandwidth of peak i (Figure 1)

independent optimization variables

response value (dependent variable in optimization)
user adjustable weights
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